Top 50 Popular Supplier
1 100,000D_อินเวอร์เตอร์ 177,372
2 100,000D_มิเตอร์วัดไฟฟ้า 174,633
3 100,000D_อุปกรณ์ไฟฟ้าและอิเลคทรอนิกส์ 173,953
4 100,000D_เครื่องมือช่าง 173,919
5 100,000D_เอซีมอเตอร์ 171,383
6 100,000D_ดีซีมอเตอร์ 170,432
7 100,000D_อุปกรณ์แคมป์ปิ้ง 169,418
8 100,000D_เครื่องดื่มและสมุนไพร 168,775
9 เคอีบี (KEB ) ประเทศไทย 161,818
10 100,000D_เครื่องใช้ไฟฟ้าครัวเรือน 159,277
11 100,000D_ของใช้จำเป็นสำหรับผู้หญิง 159,171
12 100,000D_ขายของเล่นเด็ก 158,388
13 E&L INTERNATIONAL CO., LTD. 68,840
14 T.N. METAL WORKS Co., Ltd. 63,600
15 ฟิลิปส์อิเล็กทรอนิกส์ (ประเทศไทย) จำกัด 51,623
16 บ.ไทนามิคส์ จำกัด 44,468
17 Industrial Provision co., ltd 40,549
18 ลาดกระบัง ทูลส์ แอนด์ ดาย จำกัด 39,189
19 Infinity Engineering System Co.,Ltd 37,130
20 สยาม เอลมาเทค (siam elmatech) 35,459
21 ไทยเทคนิค อีเล็คตริค จำกัด 34,367
22 ฟอร์จูน เมคคานิค แอนด์ ซัพพลาย 32,711
23 เอเชียเทค พาวเวอร์คอนโทรล จำกัด 32,140
24 บริษัท เวิลด์ ไฮดรอลิคส์ จำกัด 31,933
25 โปรไดร์ฟ ซิสเต็ม จำกัด 28,360
26 ซี.เค.แอล.โพลีเทค เอ็นจิเนียริ่ง 27,383
27 P.D.S. Automation co.,ltd 23,760
28 AVERA CO., LTD. 23,490
29 เลิศบุศย์ 22,462
30 ห้างหุ้นส่วนสามัญ เอ-รีไซเคิล กรุ๊ป 21,236
31 เทคนิคอล พรีซิชั่น แมชชีนนิ่ง 21,112
32 Electronics Source Co.,Ltd. 20,791
33 แมชชีนเทค 20,718
34 อีดีเอ อินเตอร์เนชั่นเนล จำกัด 19,957
35 มากิโน (ประเทศไทย) 19,945
36 ทรอนิคส์เซิร์ฟ จำกัด 19,726
37 Pro-face South-East Asia Pacific Co., Ltd. 19,367
38 SAMWHA THAILAND 19,234
39 วอยก้า จำกัด 18,966
40 CHEMTEC AUTOMATION CO.,LTD. 18,438
41 IWASHITA INSTRUMENTS (THAILAND) LTD. 18,258
42 เอส.เอส.บี สยาม จำกัด 18,171
43 I-Mechanics Co.,Ltd. 18,127
44 ดีไซน์ โธร แมนูแฟคเจอริ่ง 18,118
45 ศรีทองเนมเพลท จำกัด 18,011
46 Intelligent Mechantronics System (Thailand) 17,996
47 Systems integrator 17,550
48 เอ็นเทค แอสโซซิเอท จำกัด 17,532
49 Advanced Technology Equipment 17,335
50 ดาต้า เอ็นทรี่ กรุ๊ป จำกัด 17,322
28/02/2556 19:34 น. , อ่าน 27,736 ครั้ง
Bookmark and Share
ทำไมจึงต้องใช้วิธีกระตุ้นแยก
โดย : Admin

 เรียบเรียงโดย:  สุชิน   เสือช้อย (แอดมิน)

 

           " Separately Excited DC Motor"
พื้นฐานระบบขับเคลื่อนทางไฟฟ้าที่สำคัญ แต่มีผู้ที่เกี่ยวข้องจำนวนไม่น้อยยังขาดความเข้าใจ

 

.

 

 

               เมื่อกล่าวถึง Self – excited DC Motor ( dc shunt  ,dc Series และ dc Compound ) ช่างเทคนิคหรือวิศวกรที่จบด้านไฟฟ้าหลายๆท่านก็คงพอจะนึกภาพออกว่ามอเตอร์แต่ละชนิดมีคุณสมบัติเฉพาะอย่างไร มีข้อดีและข้อด้อยอย่างไร  และเหมาะสำหรับการนำไปประยุกต์ใช้กับโหลดประเภทใด

                แต่เมื่อเอ่ยถึง
Separately Excited DC Motor ซึ่งเป็นพืนฐานที่สำคัญของระบบขับเคลื่อนทางไฟฟ้า และมีบทบาทสำคัญที่ใช้ในการควบคุมความเร็วในเครื่องจักรและกระบวนการผลิตอัตโนมัติในระบบอุตสาหกรรม กลับมีผู้ที่เกี่ยวข้องจำนวนไม่น้อยขาดความเข้าใจ  และกลายเป็นคำถามยอดฮิตที่ว่า "ทำไมจึงต้องใช้วิธีกระตุ้นแยก"


 Separately Excited กับ Self – excited ต่างอย่างไร?  

           โดยพื้นฐานของดีซีมอเตอร์แบบแบบ Separately Excited จะคล้ายกันกับSelf – excited 
ลักษณะโครงสร้างหลักจะประกอบด้วยส่วนที่อยู่กับที่ (Stator) และส่วนที่หมุนเคลื่อนที่(Rotor) หรือหากพิจารณาในรูปของวงจรสมมูลย์ทางไฟฟ้าก็สามารถแยกออกเป็น 2 วงจร คือวงจรฟิลด์ (Field Circuit ) ซึ่งทำหน้าที่ในการสร้างสนามแม่เหล็กหลัก และ วงจรอาร์เมเจอร์ (Armature circuit ) ที่ทำหน้าที่สร้างสนามแม่เหล็กรอบๆ อาร์เมเจอร์   



รูปภาพแสดงคุณสมบัติด้าน speed(n)-Torque(m) ของดีซีมอเตอร์แต่ละชนิด
   

ลักษณะ การต่อวงจรในกลุ่มของ Self – excited dc motor ขดลวดฟิลด์(Field winding) และขดลวดอาร์เมเจอร์(armature winding) จะต่อวงจรโดยใช้แหล่งจ่ายกระแสไฟฟ้าชุดเดียวกัน และมีซื่อเรียกชนิดของมอเตอร์นั้นๆตามลักษณะการต่อวงจรเช่น แบบดีซีมอเตอร์แบบขนาน (DC shunt motor) แบบอนุกรม (DC Series motor) และแบบผสม(DC Compound motor) ดังรูป

ส่วน Separately excited dc motor แหล่งจ่ายกระแสไฟฟ้าที่ต่อเข้ากับวงจรฟิลด์ และวงจรอาร์เมเจอร์ จะแยกเป็นอิสระซึ่งกันและกัน โดยคุณสมบัติด้านความเร็ว-แรงบิด จะเหมือนกับมอเตอร์ดีซีแบบขนาน      


           
ดีซีมอเตอร์มีวิธีการควบคุมความเร็วอย่างไร

 

จากรูปสามารถเขียนสมการได้ดังนี้

   Vf  =  If . Rf              ( วงจรฟิลด์)
  
Vt  =  Ea + Ia Ra  ( วงจรอาร์เมเจอร์)
   Ea  =  Vt - Ia Ra  
  (Ea = Ka ) 
   Vt  = 
Ka + Ia Ra
  จากวงจรสมมูลย์ทางไฟฟ้ากำหนดให้:

Rf :    field winding resistance             
If :      field current
 Ra :  armature winding resistance     
Ia :     armature current
 Vf :    field voltage            
Vt :     armature voltage
 Ea = แรงดันไฟฟ้าเหนี่ยวนำต้านกลับ BackEMF

 


 สมการความเร็วเชิงมุมของดีซีมอเตอร์จะหาได้จากความสัมพันธ์ดังนี้

  m = radian/ sec.    เมื่อ     { }


 
จากสมการความเร็วเชิงมุม จะพบว่าการควบคุมความเร็วของดีซีมอเตอร์ทำได้ 2 วิธีดังนี้

1.ควบคุมแรงดันอาร์เมเจอร์ 
(Armature Voltage Control)

Vt - Ia Ra

Ea

การควบคุมแรงดันอาร์เมเจอร์ทำได้โดยการกควบคุมแรงดัน ที่จ่ายให้ขดลวดอาร์เมเจอร์ 

2.ควบคุมเส้นแรงแม่เหล็ก 
(Flux Control หรือ Field control)

Ka Ø 
(
เมื่อ Ka คือค่าคงที่)

Ø

การควบคุมเส้นแรงแม่เหล็กจะควบคุมกระแสฟิลด์ ที่จ่ายให้กับขดลวดฟิลด์ โดยใช้วงจร Control Rectifier หรือ field regulator 

 ***   เพื่อให้ง่ายต่อการพิจารณาเราสามารถแยกสมการออกเป็น 2 ส่วนคือสมการส่วนที่เป็นตัวตั้ง (Vt - Ia Ra) ตัวแปรทั้งหมดจะเกี่ยวข้องและอยู่กับวงจรอาร์เมเจอร์   และส่วนที่เป็นตัวหาร ( Ka ø, ตัวแปรหลักคือ ø ซึ่งจะเกี่ยวข้องกับวงจรฟิลด์ )

 

ควบคุมความเร็วโดยใช้แบบ Self– excitedได้หรือไม่และทำไม่ต้องใช้แบบ Separately Excited ?


       จากสมการความเร็วดังที่กล่าวมาจะพบว่าหากนำมอเตอร์แบบขนานซึ่งเป็นแบบ Self – excited มาใช้ในงานควบคุมความเร็วในกระบวนการผลิดด้วยวิธีการควบคุมแรงดันอาร์เมเจอร์โดยการเพิ่มหรือลดแรงดัน เพื่อควบคุมความเร็วให้เปลียนแปลงตามกระบวนการผลิตที่ต้องการ  เราจะพบว่าทุกๆครั้งที่มีการเปลี่ยนแปลงแรงดัน จะทำให้เกิดการเปลี่ยนแปลงค่าต่างๆทั้งในวงจรวงจรฟิลด์ และวงจรอาร์เมเจอร์  โดยเฉพาะสนานแม่เหล็กในวงจรฟิลด์จะมีค่าไม่คงที่  ทำให้การควบคุมความเร็วของมอเตอร์ทำได้ยาก ( เนื่องจากความต้านทานขดลวดฟิลด์มีค่าคงที่  เมื่อมีการเปลี่ยนแปลงแรงดัน จะทำให้กระแสฟิลด์และสนามแม่เหล็กเปลี่ยนแปลงตาม )





       จากกรณีดังกล่าวจึงทำให้ดีซีมอเตอร์แบบ Self – excited ไม่เป็นที่นิยมในการใช้ควบคุมความเร็วในงานอุตสาหกรรม  โดยเฉพาะโหลดที่ต้องการแรงบิดคงที่ตลอดย่านความเร็ว ซึ่งในทางปฏิบัติจะใช้วิธีการควบคุมแบบกระตุ้นแยก (วงจรฟิลด์และวงจรอาร์เมเจอร์จะใช้แหล่งจ่ายคนละชุดกัน และแยกเป็นอิสระซึ่งกันและกัน โดยใช้แหล่งจ่าย Vf จ่ายให้วงจรฟิลด์ และแหล่งจ่าย Vt จ่ายให้วงจรอาร์เมจอร์ ) ซึ่งจะทำให้การควบคุมทำได้ง่ายขึ้น กล่าวคือการควบคุมความเร็วสามารถแยกการควบคุมในแต่ละวงจรได้โดยอิสระ เช่นหากต้องการควบคุมสนามแม่เหล็กที่วงจรฟิลด์ (กรณีต้องการความเร็วสูงๆที่เกินจากความเร็วพิกัดที่บอกบนแผ่นป้าย) ก็ทำได้โดยลดแรงแรงดัน Vf  และคงที่แหล่งจ่าย Vt ที่ต่อกับวงจรอาร์เมเจอร์ให้อยู่ระดับแรงดันพิกัด หรือในทางกลับกัน หากต้องการควบคุมความเร็วในย่านที่ต่ำกว่าความเร็วพิกัด ก็สามารถควบคุมแรงดันที่ Vt ได้โดยตรง และคงที่แรงดันพิกัดVf ที่วงจรฟิลด์เป็นต้น


 Armature Voltage Control กับ Flux Control ใช้งานแตกต่างกันอย่างไร?

            การควบคุมแรงดันอาร์เมเจอร์จะใช้ควบคุมความเร็วรอบมอเตอร์ ในกรณีที่ต้องการความเร็วรอบตั้งแต่มากกว่าศูนย์ขึ้นไปจนกระทั่งถึงความเร็วพิกัด (Rated Speed) หรือ" base speed" ลักษณะความเร็วรอบจะเปลี่ยนแปลงขึ้น-ลง ตามระดับแรงดันอาร์เมเจอร์  ส่วนสมรรถนะการทำงานในโหมดนี้ จะทำให้มอเตอร์สามารถสร้างทอร์คขับเคลื่อนโหลดได้ตามพิกัด (Rated Torque) ตลอดย่านความความเร็ว    โดยกระแสอาร์เมเจอร์ Ia จะขึ้นอยู่กับโหลด และกำลังทางกลหรือกำลังด้านขาออกจะเพิ่มขึ้นตามความเร็วที่เพิ่มขึ้น ดังรูป การใช้งานในย่านนี้จะเหมาะสมสำหรับขับเคลื่อนโหลดประเภทที่ต้องการทอร์คหรือแรงบิดคงที่ (constant Torque)


 

ส่วนการควบคุมเส้นแรงแม่เหล็ก (Flux Control หรือ Field control) ทำได้โดยการลดแรงดันที่จ่ายให้กับขดลวดฟิลด์ ซึ่งส่งผลทำให้จำนวนเส้นแรงแม่เหล็กลดลงตามกระแสฟิลด์ (สนามแม่เหล็กจะอ่อนตัวลง ,Field weakening ) และทำให้ความเร็วรอบมอเตอร์จะเพิ่มขึ้น  การใช้งานในโหมดนี้โดยทั่วไปจะใช้กับโหลดที่ต้องการความเร็วสูงกว่า base speed และต้องการแรงบิดลดลงเมื่อความเร็วรอบสูงขึ้น เช่นเครื่องม้วนวัสดุ ม้วนฟิล์ม และแมชชีนทูลต่างๆ เป็นต้น 

การควบคุมการทำงานในโหมดนี้จะไม่เหมาะสมกับโหลดประเภทที่ต้องการแรงบิดคงที่   เนื่องจากโดยทั่วไปกำลังด้านเอาท์พุตของมอเตอร์แต่ละตัวมีค่าคงที่ดังสมการ Po/p = T * Wm  (หากขับโหลดด้วยแรงบิดตามพิกัดและหมุนด้วยความเร็วตามพิกัดบนแผ่นป้ายมอเตอร์จะจ่ายกำลังด้านเอาท์พุตทามพิกัด) ดังนั้นหากนำไปใช้ขับโหลดที่แรงบิดคงที่ด้วยความเร็วที่สูงกว่าพิกัดบนแผ่นป้าย จะส่งผลทำให้มอเตอร์ต้องจ่ายกำลังด้านเอาท์พุตสูงกว่าพิกัด และเป็นอัตครายต่อมอเตอร์
 (ดูคุณสมบัติของโหลดแต่ละประเภท...คลิก)



 แนวโน้มระบบขับเคลื่อนทางดีซีเป็นอย่างไร ?

ในหลายปีที่ผ่านมาระบบขับเคลื่อนทางดีซีได้ลดจำนวนการใช้งานลงอย่างมากเมื่อ เปรียบเทียบกับระบบเอซี   (บางบริษัทที่เคยผลิตระบบขับเคลื่อนดีซีขายก็ดำเนินการต่อไม่ได้ ต้องปรับเปลี่ยนตัวเองหรือยกเลิกการผลิต  ส่วนผู้ผลิตรายใหม่ก็ไม่มีใครคิดที่จะพัฒนาระบบนี้ขึ้นมาทำตลาด) เนื่องจาก แนวโน้มและทิศทางของผู้ใช้เทคโนโลยีได้เปลี่ยนแปลงไป  เทคโนโลยีการขับเคลื่อนทางเอซี(AC Drives) ได้พัฒนาก้าวหน้าไปอย่างมากจนสามารถใช้งานทดแทนระบบขับเคลื่อนทางดีซีได้ เป็นอย่างดี อีกทั้งยังช่วยประหยัดค่าใช้จ่ายในการบำรุงรักษา จึงทำให้ผู้ที่พัฒนาและออกแบบเครื่องจักรส่วนใหญ่เปลี่ยนแปลงหันมานิยมใช้ AC Drives แทน  


         
จำเป็นที่จะต้องศึกษาเกี่ยวกับการควบคุมดีซีหรือไม่?

ถึงแม้ว่าปัจจุบัน เทคโนโลยีด้านเอซีไดร์ฟ จะพัฒนาไปถึงระดับการควบคุมแบบเวกเตอร์โดยไม่ใช้เซ็นเซอร์แล้วก็ตาม (sensorless vector control) แต่โดยพื้นฐานการควบคุมนั้นก็ยังพัฒนาเพื่อเลียนแบบการทำงานระบบขับเคลื่อน ทางดีซี ระบบขับเคลื่อนดีซีนั้นถือได้ว่าเป็นต้นแบบของการขับเคลื่อนทางไฟฟ้า ดังนั้นไม่ว่าเทคโนโลยีจะเปลี่ยนแปลงไปอย่างไรก็ตาม ระบบขับเคลื่อนทางดีซียังถือว่าเป็นพื้นฐานที่สำคัญที่จะต้องเรียนรู้และทำ ความเข้าใจก่อนที่จะก้าวไปสู่การเรียนรู้ในระบบอื่นๆ ในลำดับถัดไป

========================================================

 

 

 

30 April 2025
:: MEMBER LOGIN
E-mail Account
Password
:: OUR SPONSORS
LZD
LZD
LZD
LZD
LZD
LZD
LZD
LZD
LZD
LZD