

ศรีคอกเทียน

E-mail:yuttana_doktian@yahoo.co.in

ความแตกต่างระหว่าง

สเตนเนอร์กับฟิลเตอร์ และการนำไปใช้งาน

ท่านที่อยู่วงการไฮดรอลิกคงจะเคยได้ยินคำว่า สเตนเนอร์ มามากแล้ว และคงรู้จักคำว่าฟิลเตอร์มาก็นาน อุปกรณ์ทั้ง 2 ชนิด ทำหน้าที่ในการกรองน้ำมันไฮดรอลิกเหมือนกัน แต่ท่านคง มีข้อสงสัยหรือไม่ว่า กรองทั้ง 2 แบบ มีข้อแตกต่างกันอย่างไร อะไรเป็นเกณฑ์ในการเรียกชื่อ และการนำเอาไปใช้งานในระบบ ไฮดรอลิกอย่างไร

สเตนเนอร์ คือ กรองหยาบ และ ฟิลเตอร์ คือ กรอง ละเอียด จากนิยามข้างต้นก็คงยังมีข้อสงสัยอีกว่า เมื่อใดใช้ กรองหยาบเมื่อใดใช้กรองละเอียด จากที่เราทราบกันอยู่แล้วว่า หน่วยในการกำหนดขนาดรูของกรองมีอยู่ 2 หน่วย คือ เบอร์เมช (Mesh Number : Mesh No.) และไมครอน (Micron :

นั้ว จากนั้นนับจำนวนลวดที่นำมาถักเป็นกรองมีจำนวนเท่ากับ หรือน้อยกว่า 100 เส้น (เท่ากันทั้ง 2 ด้าน) มีค่าเท่ากับ 100 Mesh เรากำหนดกรองตัวนั้นให้เป็นกรองหยาบและถ้าจำนวนลวด มีมากกว่า 100 เส้น เรากำหนดกรองตัวนั้นในเป็นกรองละเอียด หรือถ้าเปรียบเทียบขนาดรูของกรองในหน่วยไมครอน มีเกณฑ์ อยู่ว่า ถ้ารูของกรองมีขนาดเท่ากับหรือใหญ่กว่า 150µ เรากำหนด กรองตัวนั้นให้เป็นกรองหยาบ และถ้าขนาดรูกรองตัวนั้นมีขนาด เล็กกว่า 150µ เรากำหนดกรองตัวนั้นให้เป็นกรองละเอียด ดังตารางที่ 1 เปรียบเทียบด้านล่าง

ตารางที่ 1

Mesh	Microns
60	238
100	149
200	74
325	44

จากข้อมูลข้างต้น เป็นการกำหนดสเตนเนอร์และฟิลเตอร์ ตามขนาดของกรอง แต่เรายังมีวิธีการกำหนดจากโครงสร้างได้ อีกว่า จากสเตนเนอร์มักทำมาจากสแตนเลส ดังรูปที่ 1 เมื่อ กรองอุดตันแล้วสามารถนำมาล้างแล้วใช้ใหม่ได้ ส่วนฟิลเตอร์นั้น มักจะทำมาจากเส้นใยสังเคราะห์หรือกระดาษ ดังรูปที่ 2 เมื่อ กรองอุดตันแล้วจึงต้องเปลี่ยนใหม่

นำสเตนเนอร์และฟิลเตอร์ไปใช้งานอย่างไร

ถ้าเราต้องการป้องกันการเกิดคาร์เตชั่นบริเวณทางดูดของ ปั้มดังนี้ เราควรนำสเตนเนอร์ไปติดตั้งไว้บริเวณทางดูดของปั้ม ดังในรูปที่ 3

ส่วนฟิลเตอร์นั้นเรานำไปติดตั้งได้หลายตำแหน่ง ถ้าเรานำ ไปติดตั้งก่อนเข้าตัววาล์ว ส่วนใหญ่จะเป็นวาล์วจำพวกพรอบ พอร์ชั่นนอลวาล์ว (Proportion Valve) และเซอร์โววาล์ว (Servo Valve) โดยเราอาจเรียกว่า **ไมโครฟิลเตอร์** (Micro Filter) หรือ เพรสเซอร์ฟิลเตอร์ (Pressure Filter) เพราะอยู่ทางด้านจ่าย ของปั้ม ดังในรูปที่ 3 เรายังนำฟิลเตอร์ไปติดตั้งบริเวณก่อนน้ำมัน ไหลกลับถัง ดังในรูปที่ 3

ฐปที่ 3

นอกจากนี้เรายังนำฟิลเตอร์ไปติดตั้งบริเวณฝาปิดถังน้ำมัน ไฮดรอลิกอีกด้วย ดังนั้นถ้าเราพิจารณาตำแหน่งใช้งานของ สเตนเนอร์และฟิลเตอร์ พอจะบอกได้ว่ากรองตัวนั้นเป็นชนิดใด

ศรีคอกเทียน

E-mail:yuttana_doktian@yahoo.co.in

ุฟที่ ร

ตารางที่ 2

อุปกรณ์ในระบบไฮดรอลิก	ขนาดของฟิลเตอร์ (ไมครอน)
ปั๊มและมอเดอร์แบบเฟือง	20
กระบอกสูบ	20
วาล์วควบคุมทิศทาง	20
วาล์วควบคุมอัตราการไหล	20
วาล์วควบคุมความตัน	10
ปั๊มและมอเดอร์แบบลูกสูบ	10
ปั้มและมอเดอร์แบบใบสลัด	10
พอร์ปพอร์ชั่นนัดวาด์ว	10
เซอร์โววาล์ว	5
กระบอก ไ ฮตรอลิกแบบเชอร์โว	5

การนำฟิลเตอร์ที่มีขนาดเดียวกันไปใช้กับอุปกรณ์อื่น ได้ทุกชนิดหรือไม่

ขนาดของฟิลเตอร์ที่เรานำไปใช้ในระบบไฮดรอลิกนั้น ใน แต่ละขนาดเหมาะกับระบบไฮดรอลิกที่มีอุปกรณ์แตกต่างกันไป ดังตารางที่ 1

ตัววัดประสิทธิภาพของกรอง

ประสิทธิภาพของกรองนั้น ดูจากค่า **เบตาเอ็กซ์** (Beta Valuve : Bx) โดยที่ X คือ ขนาดของอนุภาคที่เราต้องการดัก ไว้ เช่น ขนาด 5, 10 ไมครอน เป็นต้น ส่วนใหญ่เราควรเลือก ใช้กรองที่มีค่า Bx ≥ 100 (absolute) หมายถึง กรองสามารถ จับอนุภาคขนาด X ไว้ได้ 99 ชิ้น จากอนุภาคทั้งหมด 100 ชิ้น โดยมีที่มาคือ

Bx = จำนวนอนุภาคขนาด × ด้านก่อนผ่านกรอง จำนวนอนุภาคขนาด × ด้านหลังผ่านกรอง

ถ้านำกรองตัวดังกล่าวไปจับอนุภาคที่ใหญ่กว่าขนาด X จำนวน อนุภาคนั้นจะไม่สามารถผ่านกรองไปได้เลย จากคำแนะนำถ้า Bx ≥100 กรองตัวนี้จะมีประสิทธิภาพเท่าใด

เมื่อใดถึงตรวจสอบรักษาสภาพของกรอง

ในหลักการของการบำรุงรักษาระบบไฮดรอลิกอีกอย่างหนึ่ง คือ ควรทำการตรวจสอบตามเวลาที่กำหนด มีกำหนดเวลาในการ ตรวจสอบสภาพกรอง ดังนี้

- ตรวจสอบใน 1 ชั่วโมงแรกขณะที่ระบบไฮดรอลิกเริ่มทำงาน
- ๑ ตรวจสอบทุกๆ วัน ในช่วง 1 สัปดาห์แรกของการทำงาน
- ตรวจสอบทุกๆ สัปดาห์ หลังผ่านสัปดาห์แรกของการ ทำงานมาแล้ว
- ตรวจสอบทุกๆ เดือน หลังผ่านการทำงานมาแล้ว 100
 ชั่วโมง

ตรวจสอบกรองตันหรือไม่ถ้าตันดูจากอะไร

อุปกรณ์ที่เป็นตัวบ่งชี้สภาพของกรอง มีหลายแบบดังนี้

 ตัวบ่งชี้เป็นแบบกลไก แสดงผลออกมาเป็นแท่งสี เมื่อ กรองตันจะแสดงสีแดงออกมา

2) ตัวบ่งชี้เป็นแบบสวิตช์ความดัน (Pressure Switch) แสดงผลออกมาเป็นหลอดไฟ เมื่อกรองตันหลอดไฟจะสว่าง

3) ตัวบ่งชี้เป็นแบบมาตรวัดความดัน (Pressure gauge) แสดงผลออกมาเป็นเข็มชี้บนหน้าปัทม์ เมื่อกรองตันเข็มชี้จะชื้ ไปยังแถบสีแดง

รูปที่ 12

ดังนั้นเมื่อกรองตัน เราควรทำการเปลี่ยนกรองทันที เพราะ ถึงแม้ว่าระบบไฮดรอลิกยังสามารถทำงานต่อไปได้ แต่น้ำมันใน ระบบสกปรกจะเป็นสาเหตุหลักที่ทำให้ระบบไฮดรอลิกเสียหาย

สรุปแล้วการจำแนกความแตกต่างระหว่าง Strainer และ Filter นั้น พิจารณากันที่ขนาดของรูกรองและตำแหน่งการติดตั้ง การนำเอาไปใช้งานนั้นขึ้นอยู่กับ Clearance ของอุปกรณ์ที่นำ มาใช้ในระบบไฮดรอลิก ส่วนการบำรุงรักษาสามารถดูได้จาก Indicator

MTM

เอกสารอ้างอิง

• The Hydraulic Trainer Volume 1, Rexroth Hydraulics, 1991.